Why machine learning algorithms fail in misuse detection on KDD intrusion detection data set

نویسندگان

  • Maheshkumar Sabhnani
  • Gürsel Serpen
چکیده

A large set of machine learning and pattern classification algorithms trained and tested on KDD intrusion detection data set failed to identify most of the user-toroot and remote-to-local attacks, as reported by many researchers in the literature. In light of this observation, this paper aims to expose the deficiencies and limitations of the KDD data set to argue that this data set should not be used to train pattern recognition or machine learning algorithms for misuse detection for these two attack categories. Multiple analysis techniques are employed to demonstrate, both objectively and subjectively, that the KDD training and testing data subsets represent dissimilar target hypotheses for user-to-root and remote-tolocal attack categories. These techniques consisted of switching the roles of original training and testing data subsets to develop a decision tree classifier, cross-validation on merged training and testing data subsets, and qualitative and comparative analysis of rules generated independently on training and testing data subsets through the C4.5 decision tree algorithm. Analysis results clearly suggest that no pattern classification or machine learning algorithm can be trained successfully with the KDD data set to perform misuse detection for user-to-root or remote-to-local attack categories. It is further noted that the analysis techniques employed to assess the similarity between the two target hypotheses represented by the training and the testing data subsets can readily be generalized to data set pairs in other problem domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

راهکار ترکیبی نوین جهت تشخیص نفوذ در شبکه‌های کامپیوتری با استفاده از الگوریتم-های هوش محاسباتی

In this paper, a novel hybrid method is proposed for intrusion detection in computer networks using combination of misuse-based and anomaly-based detection models with the aim of performance improvement. In the proposed hybrid approach, a set of algorithms and models is employed. The selection of input features is performed using shuffled frog-leaping (SFL) algorithm. The misuse detection modul...

متن کامل

Designing an Intelligent Intrusion Detection System in the Electronic Banking Industry Using Fuzzy Logic

One of the most important obstacles to using Internet banking is the lack of Stability of transactions and some misuse in the course of transactions it is financial. That is why preventing unauthorized access Crime detection is one of the major issues in financial institutions and banks. In this article, a system of intelligence has been designed that recognizes Suspicious and unusual behaviors...

متن کامل

Application of Machine Learning Algorithms to KDD Intrusion Detection Dataset within Misuse Detection Context

A small subset of machine learning algorithms, mostly inductive learning based, applied to the KDD 1999 Cup intrusion detection dataset resulted in dismal performance for user-to-root and remote-to-local attack categories as reported in the recent literature. The uncertainty to explore if other machine learning algorithms can demonstrate better performance compared to the ones already employed ...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Intell. Data Anal.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2004